Enhancing Active Learning for Semantic Role Labeling via Compressed Dependency Trees

نویسندگان

  • Chenhua Chen
  • Alexis Palmer
  • Caroline Sporleder
چکیده

This paper explores new approaches to active learning (AL) for semantic role labeling (SRL), focusing in particular on combining typical informativity-based sampling strategies with a novel measure of representativeness based on compressed dependency trees (CDTs). In essence, the compressed representation encodes the target predicate and the key dependents of the verb complex in the sentence. We first present our method for producing CDTs from the output of an existing dependency parser. The compressed trees are used as features for training a supervised SRL system. Second, we present a study of AL for SRL. We investigate a number of different sample selection strategies, and the best results are achieved by incorporating CDTs for example selection based on both informativity and representativeness. We show that our approach can reduce by up to 50% the amount of training data needed to attain a given level of performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

Tree Representations for Chinese Semantic Role Labeling

We compare different parse tree representations for the task of Chinese Semantic Role Labeling (SRL), including dependency and constituency parse trees, two tree pruning methods, and neighbor features. Three learning models are compared. By using SVM classifier with neighbor features and pruning tree to phrase level we achieve significantly better speed and accuracy than state of the art Chines...

متن کامل

Cross-Lingual SRL Based upon Universal Dependencies

In this paper, we introduce a cross-lingual Semantic Role Labeling (SRL) system with language independent features based upon Universal Dependencies. We propose two methods to convert SRL annotations from monolingual dependency trees into universal dependency trees. Our SRL system is based upon cross-lingual features derived from universal dependency trees and supervised learning that utilizes ...

متن کامل

Semantic Role Labeling Using Dependency Trees

In this paper, a novel semantic role labeler based on dependency trees is developed. This is accomplished by formulating the semantic role labeling as a classification problem of dependency relations into one of several semantic roles. A dependency tree is created from a constituency parse of an input sentence. The dependency tree is then linearized into a sequence of dependency relations. A nu...

متن کامل

Efficient Convolution Kernels for Dependency and Constituent Syntactic Trees

In this paper, we provide a study on the use of tree kernels to encode syntactic parsing information in natural language learning. In particular, we propose a new convolution kernel, namely the Partial Tree (PT) kernel, to fully exploit dependency trees. We also propose an efficient algorithm for its computation which is futhermore sped-up by applying the selection of tree nodes with non-null k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011